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General quantum surface-of-section method 

Tom& Prosent 
Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, 
SLO-62000 Maribor, Slovenia 

Received 28 November 1994, in final form 29 March 1995 

Abstract. A’ new method for exact quantization of general bound Hamiltonian systems is 
presented. It is the quantum analogue of the classical Poincd surface-of-section (SOS) reduction 
of classical dynamics. Fe quantum P o i n d  mapping is shown to be the product of the 
two geneialired (non-unitmy but compact) on-shell scattering operators of the two scattering 
Hamiltonians which are obtained from the origin$ bound one by cutting the f -dimensional 
configuration space (a) the along the (f - 1)-dimensional configurational SOS and attaching 
the Rat quasi-onedimensional waveguides instead. The quantum Poincd mapping has fixed 
points 5 the eigenenergies of the original bound bmihDnian. The~energy-dependent quantum 
propagafor (E - fi)-’ can be decomposed in term of $e four energy-dependent propagators 
which propagate from’andlar to cs to and/or from configurational SOS (which may generally be 
composed of many disconnected parts). 

I show that in the semiclassical limit (h + 0) the quantum Poincd mapping converges to 
the Bagomolny’s propagator and explain how the higher-order semiclassical mmt ions  can be 
obtained systematically. 

1. Introdnction 

Over the last decade or two there has been an increasing interest in efficient quantization 
procedures for simple (having only few freedoms) but nonlinear (possibly chaotic) 
Hamiltonian systems. Here I consider bound and auronomow Hamiltonian systems with 
f freedoms. Directly solving the timeindependent Schrodinger equation in f -dimensional 
configuration space (CS) or the equivalent eigenvalue problem for the Hamiltonian matrix in 
an appropriate basis is the first but certainly not the best idea. A question was raised in [7] 
as to whether there exists a quantum analogue of the surface-of-section (SOS) reduction of 
classical dynamics [SI which reduces smooth bound and autonomous Hamiltonian dynamics 
over 2 f -dimensional phase space to a discrete Poincar6 mapping over only (2 f - 2)- 
dimensional SOS. 

In the case of quantum billiard systems in two dimensions ( f  ~= 2) we have the so- 
called boundary integral method which reduces a two-dimensional Schrodinger equation to 
a one-dimensional integral equation. Its kemel can be interpreted as the quantum bounce 
map which is a special case of PoincarC mapping. Smilansky and coworkers [2,14] have 
developed a more general scattering approach for quantization of billiards. They construct 
exact quantum Poincar.5 mapping for two-dimensional billiards with respect to the arbifmy 
line of section as the product of the two scattering matrices of the two opened billiards. 
These methods are typically much more efficient than the direct diagonalization, since *e 
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dimension of the matrices they use is typically of the order of the square root of the 
dimension of the original Hamiltonian matrix. On the other hand Bogomolny succeeded 
in constructing an approximate semiclassical Poincar.5 mapping with respect to an arbitrary 
configurational surface of section for an arbitrary autonomous Hamiltonian. In this paper 
I present the generalization of the scattering approach for quantization of almost arbitmg 
bound Hamiltonians and show that it reduces to the Bogomolny's theory in the semiclassical 
limit A + 0. 

In section 2 I construct the quantum Poincark mapping and prove that the eigenenergies 
of the original Hamiltonian correspond to the fixed points of quantum Poincar6 mapping. I 
also prove theoretically a perhaps even more interesting SOS decomposition ofthe resolvent 
of the Hamiltonian. Here I also study the semiclassical limit of newly defined propagators 
and explicitly calculate the leading-order and next-to-leading order terms while I explain how 
higher-order corrections (in powers of E )  can be obtained systematically. The symmetries 
of quantum Poincar.5 mapping are discussed and it is explained how the SOS quantization 
condition can be used very efficiently in practical calculations, especially for the generic class 
of the so-called semi-separable system. In section 3 I formulate an abstract quantum SOS 
method which can be applied to arbitrary boundary-value differential equation problems. 
Then I apply an abstract theory to the case of the energy-dependent Schrodinger equation of 
section 2 and more general cases of non-relativistic or even relativistic systems (described 
by the Dirac equation) coupled to arbitrary external gauge fields. In section 4 the method 
is generalized to the case of non-simply but multiply-connected CSOS. In section 5 I discuss 
the meaning and applicability of the new results and reach conclusions. Some preliminary 
results of this project have already been reported [9, IO]. 

The idea behind the proofs of the major results, although they are technically quite 
compl~x, is very simple. We assume that a bounded energy-dependent (stationary) 
Schrlidmger equation with the prescribed values of the wavefunction on (f - 1)- 
dimensional configurational SOS has unique solutions on both sides of CS with respect to 
the configurational SOS. Then we study the (quantization) conditions under which these two 
solutions may be matched smoothly to give an eigenfnnction over the entire cs, such that 
it is continuous and continuously differentiable on the configurational SOS. I have tried to 
argue in an intuitive physical way as much as possible, however, the use of some technical 
mathematical tools and formulations is unavoidable. Nevertheless, the results are believed 
md shown to be correct on intuitive physical grounds but the proofs are not yet fully 
rigorous. 

2. Surface-of-section quantization 

2.1. Notation 

The basic results of this paper are most beautifully and compactly written in terms of some 
new physical quantities whose mathematical definitions and notation are described in this 
subsection. 

We study autonomous and bound (at least in the energy region of our concem) 
Hamiltonian systems with few, say f, freedoms, living in an f-dimensional configuration 
space (CS) C. One should also provide a smooth (f - 1)-dimensional submanifold of CS 
C which shall be called the conjigurational sulfate ofsection (csos)t and denoted by So. 

t The more gene& m e  of a (2 f -2)-dimensional SOS in a2  f -dimensional phase space which is not perpendicular 
to cs m o t  be u m e d  within the present approach except in the cases where one can change the phase space 
coordinates by means of M appropriate canonical transformation, 
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In this section we only consider the case of simply-connected csos whereas in section 4 
we study the case of more general muZtipZy-connected CSOs. We choose the coordinates in 
cs, q = (z, y) E C in such a way that the CSOS is given by a simple constraint y = 0, 
or &, = (S, 0). The& coordinates need not be global, i.e. they need not cover the whole 
cs, but they should cover the open set which includes the whole CSOS SO. This means that 
every point in So should be uniquely represented by -0s coordinates x E S which may 
be more general than Euclidean coordinates Rf-’  e.g. (f - l)-dm sphere Sf-’). In this 
section we shall assume that SO is an orientable manifold so that it cuts the cs C in two 
pieces which will be referred to as upper and lower and denoted by the value of the binary 
index U = t, .1 (see figure 1). In arithmetic expressions the arrows will have the foliowing 
values j- = +1, .1= -1. My approach presented in this section applies to a quite general 
class of bound Hamiltonians whose kinetic energy is quadratic, at least perpendicularly to 
csos, 

(1) 

In the following sections we generalize this class to include Hamiltonians having coordinate- 
dependent mass (which arise in the curvilinear coordinntes which must be used in the case 
of nongut CSOS) and/or terms linear in pr (which appear, for example, due to the presence 
of a magneticfieid). 

In quantum mechanics, the observables are represented by self-adjoint operators in a 
Hilbert space 7l of complex-valued functions Y(q)  over the 13 C which obey boundary~ 
conditions Y ( X )  = 0 and have a finite L2-norm lcdq 1Y(q)I2 < M. We shall use.the 
Dirac notation. A pure state of a physical system is represented by a vector (ketlY)) which 
can be expanded in a convenient complete set of basis vectors, e.g. position eigenvectors 
IQ) = l b , ~ ) .  IY) = Jedqlq)(qlY) = j”cdqW(q)lq) (in a symbolic sense, dnce lq) are 
not proper vectors, but such expansions are still meaningful iff Y(q)  = (qlY) is square 

I 
H = z;;;p; + H’(p,; I, Y ) .  

u m e r  s i d e  

lower s i d e  

H 

. ,  

+ H 

W 

Figure 1. The geometry of the two-dimensional cs of a typical bound system (a) with simply 
connected csos. lsopotential contoun are shown. The product of classical or quantal scattering 
mappings of the two scattaing systems shown in (b)  and (c) i s  equal to the classical or auantal 
Poin& mapping of a bound system (a). 
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integrable i.e. a Lz(C)-function). Every ket [Y) E 3t has a corresponding vector from the 
dualHilbertspace3t',thatisbra(Y[ E X', (Ylq) = (q[Y)*. Weshalltheusemathematical 
accent A to denote linear operators over the Hilbert space X. Operators of SOS coordinates 
5 and &, defined byt 

(z,Yikiy) = E@(=, Y) (2, Y ~ P ~ I Y )  = -iha,u(z, y) 

can also be viewed as acting on functions $(z) of z only and therefore operating in some 
other, much smaller Hilbert space of squareintegrable complex-valued functions over a 
csos s, 

IZIWI = w z )  {zii%i+} = - w a z w .  
Vectors in such a reduced sos-Hilbert space, denoted by L, will be written as 19) and 
linear operators over L will have a mathematical accent" like the restricted position 2 and 
momentum $x. Eigenvectors 10) of the SOS-position operator 5 provide a useful complete 
set of basis vectors of L. The quantum Hamiltonian can be written as 

hz 
2m ? A = --P+ &(y) &(y) = H'(-ihar, z, y) 

The eigenstates of the reduced inside-csos Hamiltonian $(O) = A'(0)lr restricted to the 
sos-Hilbert space L, In} E L 

$(O)ln) = ~Aln1 (3) 
which are called sos-eigenmodes, provide a useful (countable n = 1,2, . . .) complete and 
orthogonal basis for L since $(O) is a self-adjoint operator with discrete spectrum when 
its domain is restricted to L. 

The major problem of bound quantum dynamics is to determine the eigenenergies E 
for which the Schr6dinger'equution 

(4) (s. YlAIY(EN = EY(z,  Y. E) 
has non-trivial normalizable solutions-eigenfunctions Y (x, y ,  E ) .  

2.2. Scattering formulation 

In this subsection I will introduce our basic tools using the powerful quantum mechanical 
time-independent multichannel scattering theory [S, 151. 

To connect bound Hamiltonian dynamics and scattering theory one should make the 
following very important step. Cut one p m  of cs off along csos and attach a semi-infinite 
separable (flat along the y-axis) waveguide instead (see figure 1). Thus we introduce two 
scattering Hamiltonians 

Every wavefunction inside the waveguide (uy < 0) at energy E can be separated as the 
superposition of products of a bound state (sos-eigenmode n) in the z-direction and free 
motion in the y-direction, 

Iz I n )  e% ( E ) )  

t In the case ofthe non-Euclidean SOS they should be replaced by the generators of the corresponding Lie algebra. 



General quantum surface-of-section method 4137 

with the corresponding wavenumber determined by the energy difference E - EL available 
for the motion perpendicular to the csos 

For any value of energy E ,  there is typically a finite number of the so-called open 
or propagating sos-eigenmodes-channels with real wavenumbers for which EA < E ,  
and infinitely many closed channels with imaginary wavenumbers for which EA > E. 
The scattering wavefunction Yo@, y ,  E )  at a given energy E (or complex-conjugated 
wavefunction Yz(z, y .  E*) = (Yo(z, y ,  E*))") satisfying the Schradiger equation 
kolY0(E)) = EIY,,(E)) can be uniquely parametrized by the vector I@} from the SOS- 
Hilbert space L (or by vector {VI from the dual sos-Hilbert space L'). I@) E L essentially 
parametrize the incoming waves 

which uniquely determine the whole scattering wavefunction. ,Therefore the wave operarors 
can be defined, namely Qu(E) which map from 1: to 'H (or ?:(E) which map from 'H to L) 
and whose kernels are given by the scattering wavefunctiois (or their complex conjugates) 

On the u-side of CS (cry 2 0) the scattering wavefunction satisfies the ordinary Schriidinger 
equation (4) whereas in the waveguide ( u y  < 0) it is a superposition bf incoming and 
scattered waves 

Yo@, y. E )  = - ~ [ z l n ] k ~ ' ~ Z ( E ) [ e ' u ~ ~ ( E ) ' 6 , 1  + e-iuk*(E)JTu .,I{ 1 I*} 
f i  " . I  

T s ( E )  is the generalized scattering matrix since it also includes closed (non-propagating) 
modes and f n ( E )  is the corresponding scattering operator over L 

?,(E) = C T , l n } { l l .  (11) 
n.1 

Here I have to make three important notes: 

the conjugated energy E* is used in the argument of the complex-conjugated 
wavefunction (7) in order to make all the relevant operators, e.g. PL(E), complex 
analytic functions of E rather than E*. 
The sos-states I**} and I@} are generally different. 
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e The equation (9) is non-trivial and does not follow from (8) but it is a consequence of 
the Hermitian symmety of the scattering Hamiltonians k, as will be shown in the next 
P=?PPh. 

Let us now consider the resolvents of the scattering Hamiltonians (5) with outgoing 
boundary conditions 

It is convenient to inwoduce a hybrid representation of these scattering Green functions 
denoted by G,(y, y’, E )  E L: (being a matrix element in the y-variable and an operator in 
the z-variable) defined as 

(13) 

Inside the waveguide (cry 4 0, cry‘ Q 0) these hybrid Green functions satisfy the following 
‘free-motion’ Schrijdinger equations in both arguments: 

{zI~.,CY. Y’. E)lz‘} = (e, ~lB,(E)lz’, Y‘) . 

The general solution of this linear system (in the waveguide) is given by the sum of 
particular ‘free-motion’ solution 

C,CY,Y‘, E )  = &f- m v  1/2 ( E )  ei%tnlu-r’l ~ - I / z ( E )  

and general solution of the homogeneous system satisfying outgoing boundary conditions 

(16) 
Gc(y, y’, E )  - &,(y, E )  = T,+/2(~) m e - - i ~ B ( E ) s ~ e - i ~ ~ ( E ) ~ ‘ B - ~ / 2 ( E ) ,  

Their sum {zIec(y, 0, E )  satisfies the Schrodmger equation (4) on the u-side (uy 2 0), so 
comparing it locally, at uy = +O, with wavefunctions (8) yields 

%(z,r, E )  = - {4&(y. 0, E)~’”(E)I@l 

lii 

(17) 
f i  

my 2 0 

and determines the bee operator valued parameter, A = fo(.E). Thus the waveguide 
expression for the hybrid scattering Green function reads (cry 4 0, ay’ 4 0) 

f i u ( y ,  yl,  E )  = ;~-I/Z(E) elK(E)b-y’l + e-ie2(E)sf ( E )  e-iu%(E)u‘ ] - I/Z ( E ) .  (18) 

Since fi,(O, y, E)Iz}  satisfies conjugated Schrodinger equation, there exist sos-states Iq”) 
such that 

&Gi 

Gi [ . -  

(19) 
f i  

‘J$(z, y ,  E*) = - ~ @ * I i 1 ~ 2 ( E ) & ( O ,  Y. E) l4  “Y > 0 .Gi 
and equation (9) follows. 
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2.3. SOS energy quantization 

Now I shall formulate an exact energy quantization condition for the original Hamiltonian 
matrix B solely in terms of the scattering operators +-(E). 

Theorem la. Every energy E for which the operator 1 - ~ J ( E ) ~ T ( E )  (where the order of 
the arrows may be reversed) is singular is 

either eigenenergy of the original Hamiltonian 8, 
or it is a threshold energy for opening of a new channel, 
orboth. 

More precisely: the dimensions of the left and right null-space of an operator l - f $ ( E ) f t ( E )  
are the same 

(20) 
and the following inequality for dT(E) in terms of the dimension of the null space of 
operator E - 8, dH(E) = dim ker(E - fi), and the dimension of the null space of operator 
K 2 ( E ) ,  d&E) = dimkerk'(E), holds 

(21) 

PmoJ Letwdr(Eo) Sos-states I t  a )  E 13, n = 1, ..., &(Eo) span the null space of 
1 - f$(Eo)T@o) 

(22) 

.. 
dT(E) = dimker(1 - ~+(E)~T(E)) = dimker(1 - f+(E)ft(E))+ 

m=dddE), &(E)) < &(E) < + ( E )  +&(E) .  

(1 - . f ~ ( ~ o ) f ~ ( ~ o ) ) ~ t  n~ = 0. 

1.1 n~ = i i ( . ~ o ) ~ t  n )  

It n )  = f~(~0)l.l nI: 

Then one may define another set of dr(Eo) SOS states 1.1 n) E L by the prescription 

(23) 
 in terms of which the equation (22) may be rewritten as a relation symmetric to (23) 

(24) 
Each of these vectors It n )  lies either in the null space or in the image of &'(EO), since 

where f ' (E )L  = kerk'(E)' since f ' ( E )  is self-adjoint. Let the first mK vectors 
It m), .m = 1,. . . , mK lie in ker k'(E). In order to make sure that scattering wavefunctions 
(8) and (9) have a regular limit E + EO, since f - ' l Z ( E )  is becoming singular if 
kerk'(E0) # 0, one should demand 

for any 19) E kerk'(Eo), so kerk'(Eo) is invariant under f V ( E o )  and fJ(E0) 

From equation (25) we also see that kerk'(E0) C ker(1- f~(Eo)f?p(Eo)),  so I t  m) span 
the entire space kerk'(E0). and so ~ K J E o )  = mK Q dT(E0). Therefore the image k'(E)L 
is also invariant under T,(Eo) and TJ(Eo), so the counterparts 1.1 I) of the remaining 
dT(E0) - d ~ ( E o )  sos-states I t  I), I = &(EO) + 1, ..'.,dr(Eo) from the $age k'(E)L 
also lie in'the image k'(E)L. In the image one can define the inverse of K'(E0) and the 
inverse of its fourth root, namely k-'/'(Eo). Using equations (23) and (24) one can Write 

L = ker k'(E0) 8 f 2 ( E 0 ) L  

(1 +.fdEo))191= 0 I@l(l+ fdE0)) = 0 (25) 

fC(Eo) kerk'(E0) = f;(Eo)kerk'(Eo) = kerf'&,). 

( l + f d E o ) ) l t I I =  (1+fJ(EO))I&Il 

(1 r f@o))It I1 = -(1 - 6(Eo))l$ I 1  
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which can be rewritten using the values of the wavefunctions and their normal derivatives 
on the csos (from (8)) 

dR(Eo), the maximal number of such linearly independent eigenfunctions *!(E, y) is at 
least dT(Eo) - dK(E0) since due to completeness of SOS eigenstates In) the mapping 
Qb(E0) is injective on the image RZ(Eo)L. But this number, dH(Eo), can be larger than 
dT(Eo) - dK(Eo) (but not larger than d&)) since there may be some states from the null 
space of BZ(Eo) for which the limits E + Eo of (26) and (27) of the upper (U =t) and 
lower (U = 4) p& accidentally match. Therefore we have proved an inequality (21). 

Analogously, one can show that the d;(Eo) basis vectors {$n*[ E L', n = 1,. . . , d@o) 
of the left null space 

(2% 

, .  

{$ n*l(1- Z ( E ~ ) ~ X E ~ ) )  = o 
are mapped onto conjugated basis of eigenfunctions under the propagator $(Eo) 

where the counterparts {t n*I are again defined as 

{t n*l= (4 n'lf$(Eo). (31) 

Generally, these conjugated wavefunctions are con$nuous and differentiable on the csos 
and are thus eigenfunctions of the Hamiltonian H if Iun') E Kz(E~).C, otherwise if 
Ion*] E kerkZ(Eo) the continouity can be accidentally satisfied in the l i t  E + EO if 
both contributions (upper and lower) coincide. This happens when the corresponding limi$ 
for Iun} (26) and (27) coincide since the two cases only differ by a complex conjugation. 
So, the dimensions of left and right null space of 1 - f+(Eo)f?(Eo) should be the same 

The operator ?(E)  = f$(E)f?(E) wiIl be called a quantum Poincare' mupping and 
is the product of the two quantized Poincark scattering mappings. We have proved an 
extremely efficient quantization condition (as we shall show later), namely, the energies 
where the quantum Poincar.5 mapping has fixed points (eigenvalue 1) are either: (i) 
eigenenergies of the Hamiltonian k or (ii) thresholds for opening of new channels EL 
(which are already known as a solution of (3) as a prerequisite of the method). 

dT(Eo) = d;(Eo). 
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2.4. SOS decomposition of the resolvent of the Hamiltonian 

The kemels of the scattering propagators {zlfAE)Id) wil! henceforth be called csos-csos 
propagators. Then we also define: (i) The linear operator Q m ( E )  from 1: to 'H and the linear 
operator Fs(E) from 'H to 1: with the kemels 

which are called csos-cs and cs-csos propagators, respectively, and (ii) a linear operator 
&(E) over 'H with the kemel 

Y > O ,  Y'20 

YY' < 0 
(& YI~O(E)IZ'~ Y') Y < 0, Y' < 0~ (34) 

which is called a CS-CS propagator (without crossing the CSOS in between). 

Theorem 2a The energy-dependent quantum propagator (i.e. the resolvent of the 
Hamiltonian) &E) = ( E  - H)-' can be decomposed in terms of the cs<s propagator- 
with no intersection with the CSOS So-Go({), CMOS propagator i b ( E ) ,  CSOS-CS 
propagator Q,(E), and csos-csos propagator Tu(E) 

E ( E )  = &(E)  + Qc(E)(l - f-r(E)fs(E))-l?-m(E) 
U '  

Quantities. (41(?0(E)Iq'). (qIQm(E)ls'}, { ~ l ~ ~ ( E ) l q ' )  and { ~ l f ~ ( E ) l d }  should be 
interpreted as the probability amplitudes to propagate through the u-side of cs from point 
q' in cs/d on csos to point q in cs/x on csOs at energy E and without crossing csm 
in between. Then-this decomposition formula can be understood intuitively by expanding 
the operator (1 - T-o(E)Tu(E))-l in a geometric series and then using the basic postulates 
of quantum mechanics about summation of the probability amplitudes of alternative events 
(different number of crossings of CSOS) and multiplication of the probability amplitudes of 
consecutive events (sequential crossings of csos) [3], since the system which propagates 
from point qi to point qf in cs along continuous path can cross the csos arbitrarily many 
times. (In fact, the number of crossings, is even if qi and qf lie on the same side of csos 
and odd otherwise.) Two versions of the proof of this formula are given in [9,10] while in 
this paper the proof will be given for more general cases which include the present one in 
the following two sections. 

2.5. Semiclassical limit 

In order to find explicit leadineorder semiclassical expressions for the CSOS/CS<SOS/CS 
propagators it is convenient to express them first in terms of the scattering (ireen functions 
in the hybrid representation (17)-(19) 

2 2  

m 
= --kl/*(~)(&(~, 0, Ej - &&CO, 0; E ) ) ~ ' / ~ ( E )  
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where the fourtb propagator Eo(y,y', E )  is already defined in terms of the scattering 
resolvents (34) and B(y) is the well known Heaviside step function. Then define a linear 
operator called half-derivative with the prescription 

(36) 
which is a sensibly defined positive square root of the differential operator a,. This is 
a non-local operator which can be expressed explicitly for functions f(y) which increase 
slower that the square root as y goes towards plus or minus infinity, 

al/Zear = a 1 / 2 e a ~  ~ ~ ~ 1 l z  bo 
3 

respectively. Thus for an operator-valued exponential function, a, 112 e lKT ." = ,h?/2ejtY. 

One may use the Schradinger equation with proper boundary conditions (which were used 
to derive (17) and (19)) to see that the scattering Green functions with one coordinate in 
the waveguide may be written as exponential functions in that coordinate 

Using the forms (16), (37) and the definition of half-derivative one may rewrite the 
propagators in a more useful form 

From these formulae one can easily derive semiclassical approximations by using the 
leading-order semiclassical approximation for the energy-dependent Green function (see 
e.g. h 1 1 )  

oj(a d .  E )  = I detazaz,sj(s, 4, E )  I 'Iz 
where the sum is taken over (usuallyfnitely many) classical scattering trajectories labelled 
by j with classical actions Sj(p, q', E )  = 4 dq . p, and Morse indices U, which count 
the number of conjugated points along the orbit j .  psj = a,Sj and p;,j = -a,,Si are the 
perpendicular (w.r.t. csos) projections of the final and initial momenta. Thus using the 
definition (36) in the leading semiciu&cal order the half derivatives only cancel the square 
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roots of y-momenta if one expresses the root of the (f + 1) x (f + 1) determinant Bj in 
terms of the root of the (f - 1) x (f - 1) determinant Dj, 

In equation (42) the sum cj is restricted to only classical orbits which strictly leave csos and 
lie entirely on the a-side of cs. The 'trivial' classical scattering orbits whose y-coordinates 
are constantly zero are the only classical orbits of the semiclassical free Green function 
&=(E) and are thus cancelled in expression (38) for the propagator f r ( E ) .  The sums in 
(43) and (44) contain only the classical orbits which lie entirely on the o-side of the cs with 
one end point on the csos and the other end point lying in the a-side of cs. If there was a 
classical orbit whose part would lie in the waveguide then its y-coordinate should have an 
extremum there which, however, is impossible since the classical motion in the waveguide 
is free in the y-direction. The semiclassical expression for the C S - C ~  propagator without 
crossing the csos is (q y&(E)Iz', y'), thus according to definition (34) it looks the same 
as RHS of (41) where the sum now includes only the classical orbits which do not cross 
CSOS. The leading-order asymptotic results (42)-(44) agree with the se&classical theory of 
Bogomolny [I]. 

The higher-order semicluSsicul corrections to CSOS/CS-CSOS/CS propagators can be 
obtained -in a systematic way by (i) inserting a corrected higher-order semiclasical 
expression for the scattering Green function (41) in the formulae (38)-(40) and (i) 
evaluating the half-derivatives in terms of a power series  in^ h. I will now show. briefly 
how both steps can be performed systematically. 

(i) The higher-order corrections fo semiclassical energy-dependent Green function 
(q[(?,,(F)ld) can be obtainedt by multiplying each term of (41) by a correction factor 

The corrections f,, can be calculated by inserting the whole expression into the Schrijdinger 
equation. Comparing the terms with equal powers of R and integrating along the orbit yields 
the explicit recursion formulae for the semiclassical corrections 

A j f ( P 3  d .  E )  = BT'(q, q'. [Bj(g, Q'. E) f (q ,  Q', E ) ]  
where q j ( t )  denotes the classical orbit j with end points q' and q. One must use the 
sign factors (-)""J and the Cauchy principal value of the integral in order to avoid infinite 
contributions each time one passes a singularity-conjugated point. 

t A v d 1  of his approach for a time-dependent quantum propagator (without consideration of conjugated 
points-short-time limi1) has been developed by Roncadelli [13], whereas Gaspard and Alonso [4] used another 
(path-infegral) approach Io derive an E-expansion of the Gutzwiller m e  formula 
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(ii) A half derivative of a term like e?fi f ,  where we shall take S = Sj, f = B j f , ,  
may he represented as a power series 

where en are some linear operators independent of h. Taking it twice, ai/2af/2 = a S, and 
comparing the terms with the same power of A one obtains the set of equations which 
determine the operators en 

ti = ia,s 

It is easy to see that e,, is an nth-order differential operator. For example, we give explicit 
expressions for the k s t  two 

and the next-to-leading order semiclassical expression for the quantum CsOs-csos 
propagator 

where all functions on RHS have arguments (z. 0, z', 0, E) .  

2.6. Symmetry of the CSOS-CSOSpropogator 

At a given value of energy E one can split the SOS-Hilbert space on two orthogonal 
components, 

the (usually finitedimensional) subspace of open channels and the (usually infinite- 
dimensional) subspace of closed channels 

L = LOW @ LdE)  

LOW) = {Ill.) E L ,  {ll.Ik2(E)I$}> 0) 
LCcW = ( IQ}  E L, WIk2(E)I$l .= 01 

spanned by (In). EL < E ] ,  and by {In}, E; > E), respectively. 

in a block form 
A very useful piece of information about the csos-csos propagator which can be written 

can be obtained by comparing the two expressions for scattering wavefunctions, the 
conjugated equations (9) and (8). Comparing the values and normal derivatives on csos 
one obtains two equations 

Jf;k'1/2(1 i ?-)IQ} = &k"/2+(1 f f.)l$*). 
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Noting that k+l/Zj+l/zt = (i li) and performing some algebra yields 

This is the so-called”generaluedunita~ty [14, 121 of a CSOS-CSOS propagator. Note that 
the open-open part T,OO(E) is indeed a unitary operator (47). 

Now we give the representation of the CSOS-CSOS propagator in terms of what is 
called the reactance matrix in scattering theory 181. Ikis also gives a practical recipe 
for determining the ~SOS-CSOS propagators f a ( E ) .  Let Ymv,,(z, y. E )  denote the unique 
wavefunctions which satisfy the Schrodinger equation (4) with boundary conditions 

ynUb.(e, 0, E )  = {eln) Y~~(Z,  ow;'^) = o 
where the second condition should be takqn on,the boundary of cs if the latter is not infinite. 
Then one can define the reactance operators Ri(E) with matrix elements 

and show (using equation (8)) that the csos-csos propagators can be written as 

f a ( E )  = (1 + ik,(E))(I - ik,(E))-’. (52) 
In the case of time-reversal symmetry the wavefunctions Yo, (z, y ,  E )  are real and one can 
use Green’s theorem to show that then &e reactance matrix is symmetric 

{ Z I ~ A W I ~ I  = {nlti,(E)I1) if Y ,  E )  = Y:~(z, y, E ) .  
Using representation (52) this then means that the CSOS-CSOS propagator is also symmetric 

{ ~ l f o ( ~ ) l n )  = { n l f G ( ~ ) l l )  or {elfa(~)lz’) = { Z ’ I ~ ~ C E ) ~ ~ ) .  (53) 

2.7.   practical applications and semi-separable systems 

Let us truncate the basis of C t o  include all No open channels of Lo and the first Nc 
closed channels. The truncated ( N  = No + N,)-dimensional matrices with matrix elements 
{iIfr(E)ln) and { l [ka(E) ln)  will be denoted by T,(E) and R,(E), respectively. In 
practice one should increase N ,  until numerical results converge, which is typically the 
case [14,12,11] for very SI@ values of N, already, so in the semiclassical limit N %No.  
The.practical SOS-quantization condition then reads 

det(1 - TL(E)TT(E)) =.O. (54) 

det(Rt(E)+ Rg(E)) = O .  (55) 

Using equation (52) this condition can be formulated in terms of reactance matrices 

In the case ‘o f  systems having a time-reversal symmetry (that is if HI@,, e, y) = 
H’(-pa, e, y)) the reactance matrix (51) is a complex-symmetric matrix R,(E) = RZ(E) 
which is written in terms of a purely real matrix & ( E )  via 
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where the diagonal elements are No and Nc dimensional sub-matrices. The quantization 
condition (55) can thus be expressed in terms of purely real symmetric matrices &(E)  = 
kZ(E) = R(E) 

det(R,(E)+I?J.(E))=O. (56) 
Equation (56) is much more efficient for numerical calculation of energy spectra (by 
seeking its zeros) than the original quantization condition (54) since the former involves 
real arithmetic [ 1 I]. 

There is a generic (in a sense of dynamics) class of the so-called semi-separable 
systems for which reactance matrices can be calculated straightfonvardly and hence the 
quantization condition (56) can he easily implemented. A semi-separable system should 
be separable (in (I, y) coordinates) on both sides of CSOS (for y > 0 and y c 0) but 
it can be discontinuous on csos (&'(-O) # H'(+O)). Thus one has two complete sets 
of normalized SOS eigenmodes, first In]+ are eigenstates of H'(+O), and second In)- are 
eigenstates of &(-O). Since the system is separable on both sides one can explicitly 
calculate the wavefunctions Yrn(q, E )  hy separation of coordinates 

Yt.(=, Y. E )  = &(Y. E)Izln}+ 
Y&, Y. E )  = 4~~Cv, E)blnI- 

Y 5 0 
Y < 0 

where y-dependent parts should be normalized to give q50n(0, E )  = 1. We have the freedom 
to cut cs slightly above the discontinuily and choose a privileged set In}+ with wavenumbers 
k,(E).  Then we apply (51) to calculate real reactance matrices 

k,.m = ikn(Wa,6do. ~ ) 6 , ~  

= - I ~ . ( E ) ~ ~ ( E ) I - ' / ~ ~  +MI- a,@$j(o, E )  -{ j I l )+. 
I 

The upper is diagonal while the lower includes transformations by means of real orthogonal 
matrix with elements -{lln)+ = +{rill)- which are typically easily calculated knowing the 
two sets of sos-eigenmodes. The author has applied this method for numerical calculation 
of energy levels in the so-called semi-separable two-dimensional oscillutor [Ill which is a 
generic nonlinear autonomous dynamical system with twofreedoms. The method turned out 
to be capable of yielding accurate consecutive energy levels with sequential numbers of the 
order of a few ten millions at the cost offew minutes of Convex -860 CPU time per level. 

3. Abstract formulation of the method 

In this section we devize a general and abstract mathematical framework within which 
one can prove all versions of simply-connected SOS quantization conditions and SOS 
decompositions of the resolvents of the corresponding Hamilton operators. 

Let M be an arbitrary normed vector space, which will be referred to as reducedspace. 
The vectors from reduced space M-r-vectors will be written in bold italic and linear 
operators over reduced space-r-operators will have a mathematical accent Then we 
define an r-operator valued function L(Y, E ) ,  where y is a real variable and E is a complex 
spectralparameter (e.g. energy), in order to study the following general homogeneous vector 
differential equation: 

(57) 
over the entire real axis y E R (or on some finite interval which contains zero). Normalized 
r-vector valued functions f(y), idyllf(Y)llz e CO, constitute a normed vector space, 

(a, - L(Y. E ) ) ~ ( Y )  = 0 
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denoted by 7-1. The values of the spectral parameter E for which (57) has non-trivial 
solutions in H are called generalized eigenvalues whereas the corresponding r-vector valued 
functions are called generalized eigenfunctions of, (57). It will be shown in the next 
subsection that this problev is equivalent to the time-independent Schrodinger equation 
for some special choice of L(y, E). .Equation (57) can be solved generally by means of a 
Green function &y, y’, E) which is a unique r-operator valued function which solves the 
inhomogeneous  equation 

(58) 

(59) 

(a, - i ( y ,  E))&Y, Y’. E) = S(Y - Y ~ ( Y ,  E )  
with boundary conditions 

Iim b(y, y’, E )  = o 
y+*ca 

where j ( y .  E )  is some non-singular r-operator valued function. 
Equation (58) may be written in the form i ( E ) & E )  = 1 where i ( E )  and &E) are 

the operators over 7-1 with ke%els being r-operator valued distributions .f-’(y, E)(S‘(y - 
y’) - L(y, E)S(y - y’)l and G(y, y’, E) ,  respectivelyl If left and right inverse of i ( E )  
exist and coincide then G(E) i (E)  = 1, so the Green function satisfies also the ‘conjugated’ 
equation 

c 
C(Y,Y’,E)( a , J - i ’ (~’ ,E) )=-6(~  - Y ‘ ~ ( Y , E )  (60) 

where 
i’(y, E) = - k l ( y ,  E ) i ( y ,  E)j(y,  E ) .  

~~ We shall construct the Green function &y, y’, E) by means of the Green functions 
bo(y, y’. E )  of two generdized scattering problems which are defined by cutting the y- 
axis at y = 0 and substituting the upper (J t o , ~  = t = +)flower (y c 0, U = J. = -) part 
of the function t ( y ,  E) by a constant i(E) = L(0, E ) .  Therefore these scattering Green 
functions satisfy 

(as - &Y, -Q)‘.%(Y, Y’. E )  = S(Y - Y’)~(Y,  E )  if CY 0 (61) 
, .  

(ay - i@, E))bu(y, y‘. E )  = S(y - y‘)j(y. E )  If OY < 0 (62) 
with boundary conditions 

l i  6 , ( y ,  y‘, E )  = 0. (63) 
S-+GCO 

The scattering Green function GO(y;y, E )  can be written explicitly on the (-u)-side 
(uy < 0, uy’ < 0) in terms of thepbstract scattering operator ?=(E) 

e.,(,, y‘, E) = iexp(i(E)y)($ -~$i[y - y’Ij(0, E )  - $(E))exp(i’(E)y’) (64) 
where [y] = t = +; y > 0, [y] = J. = -: y 4 0 denotes the side or sign. Equation (64) can 
also be considered as a unique definition of the abstract scattering operator, or 

f m ( ~ )  = iE,(-+o, 70, E )  + Aij(0, E ) .  (65) 

Theorem 26. The Green function of (58) &y, y‘. E) can be decomposed in terms of four 
r-operator valued functions which can be defined by means of the scattering Green functions 

bO(Y. Y’. E )  = SIrlWlEbl(Y. Y’. E )  (66) 

. de, E )  =-V‘~I~D.I (Y.O,  E) (67) 

p(y, E) = & ‘ l ~ : [ y ] ( O , ~ .  E )  (68) 
?(E) = ??(E) +?$(E) = i&;t(M, TO, E )  + i6,(70, fO, E )  + 1. (69) 
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Namely, the decomposition formula reads 

C(Y, y‘, E) = r;O(Y.Y’. E )  + rib, E)(1 - F(E))-’P(y’, E ) .  (70) 

ProoJ One must show that RHS of (70) is the solution of equations (58) and (59). The 
first term of the FXS is indeed a solution of a inhomogeneous equation (58) with boundary 
conditions (59) on both sides but it is generally discontinuous at y = 0. The second term 
of the RHS, or its first factor Q(y, E) ,  is a solution of the homogeneous equation (57) on 
both sides but it is again discontinuous at y = 0. The sum of the two terms is therefore 
also the solution of the inhomogeneous equation (58). One is left to prove that the sum is 
continuous at y = 0 and therefore a unique solution of (58). For a rb i t rq  function of y we 
define the difference operator 

Ayf(Y) f Cv + 0) - f (Y - 0). (71) 
Then the straightforward calculation yields 
A,&O, y’. E )  = Ay&(O, y‘, E )  + (AJQ(O, E))(1 - F(E))-’p(y’, E )  

= A.,Eo(O, y’, E )  - [Y’ I&~~(O,  Y’. E )  = 0 

since 

A,Q(O, E )  = &(l - ?(E)). (72) 

Theorem lb. For any generalized eigenvalue E of (57) the operator ?(E) has a fixed point. 

ProoJ Any generalized eigenfunction of (57) corresponding to the generalized eigenvalue 
E can be written in a form 

f (y)  = Q(Y. (73) 
for some non-zero r-vector a E M. One can $te explicitly, a = &‘CO2 E ) f ( O )  if 

is singular for all p = 0,j . . . r - 1. Equation (73) follows from the definition of the r- 
operator valued function Q(y, E )  in terms of scattering Green functions on the non-trivial 
side. Since the function f(y) is continuous at y = 0, A.,f(O) = 0, one sees, using 
equation (72), that a is a fixed point of the operator ?(E), 

Q(0, E )  is invertible, or more generally, a = [a;Q(y, E)l-’a;fCv)ly=o if a;Q(y, E)l,=o 

?(E)a = a. 
Note that general decomposition formula (70) is invariant with respect to similarity 

transformations 

and transformations 

where s and 5 are any bijective r-operators. 
Note that in this section the symbols denoted by letters G, Q. P, and T have different 

meaning than in section 2. The propagators from section 2 will appear as elements of block 
matrices in the following subsection. 
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3.1. Trivial application 

For example, let us first cast OUT ordinary Schrodinger problem (4) and (2) into the abseact 
form. Here the feduced space should be M = .C @ .C, since the Schrodinger equation is of 
the second order. One should take 

in (57) and (58) where k2(y, E )  = (2&R2)(E-Ei’(y)), k(E) = k(0, E).  Then, referring 
to the two components L of M with indices 1 and 2, I+(y)] = f l (y)  is a so!ution of the 
Schrodinger equation (a; + k2(y, E))[+@)} ~= 0 and -(2m/h2)&,(y, y’. E)K-’(E) is its 
normal Green function (13) in a hybrid representation. Comparing scattering ansatze (18) 
and (64) and using the similarity transformation (75) 

one obtains the usual CSOS-CSOS propagators in a compact, block form 

0 
S-”S = - ( 

O 
(77) 

One can also check that the first ‘row’ of (%/&)Q(y.E).? and the first ‘column’ 
of (ii/&)?’&y, E ) k ( E )  can be written as ( Q j ( E ) ,  Q?(E)) and ($?(E), 
respectively. It is now easy to check that the 1.1 component of the general decomposition 
formula (70) agrees with the more special case (35). 

3.2. Non-trivial applications 

There is a straightforward non-trivial generalization of application (76), namely, one can 
include non-relativistic systems which interact with very general external (gauge) fields and 
,thus have Hamiltonians in our canonical coordinates (r, y) of the form 

(78) 

where the only restriction for the self-adjoint operators &y) = A(-ifiaa, a ,  y) and 
&(y) = H’(-i?&, r, y) is that they should not depend upon fis so they can be restricted 
to act over the small sos-Hilbert space L. Again we define the reduced space as M = L@L 
and the Schrodinger equation (4) with (78) can be written 8s a first-order system (57) where 
(76) should be replaced by 

. -  1 H = -(-%as - ii(y))2 + A’()’) 
2m 

where all statements from the previous example remain valid except that now the csos- 
Csos propagator cannot be separated into upper and lowerparts like (77) and all blocks of 
?(E) are generally non-zero. 

As for another interesting application one can decompose the Green function of a 
relativistic Dirac $spin fermion bound in an external electromagnetic field A”@,  y) and 
search for its stationary states. One may choose, for example, r = (x’,x2),,y = x3 and 

3 so 
that (57) and (58) reduce to a Dirac equation where R = c = 1. The reduced Hilbert space 
is now the space of Dirac spinor-valued functions over the two-dimensional plane (x’, x2). 

icy,  E )  = y 3 0  ( y  (-iE+ieA’)+y’(al -ieA1)+y2(&-ieA2)+im)+ieA3, J = -y3  
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4. Multiple sections 

In this section I consider the case of multiply-connected -0s. Let csos, which is now a 
smooth multi-sheeted (f - 1)dimensional manifold S, divide the f-dimensional cs C on 
countably-many disconnected parts whose closures are denoted by C,, u E 3, 

where J is some finite or countable index set. Two points are in the same compartment 
C, if they can be connected by a continuous curve which does not cross csos S. The 
compartments C, and Cp are said to be neighbouring (denoted by alp) if their intersection 
Se@ is a non-empty (f - 1)-dimensional manifold 

cup e e, nep = s, z 121. 

s = us,, 
The union of all such intersections is the whole csos 

48 

fi is a self-adjoint operator over the Hilbert space 7-1 = L2(C). Let U,p,uIp be open 
sets which cover the connected parts of csos, Sap c 0,p. The Hamiltonian operator fi is 
admissible if there exist coordinates (I, y)up for each of the sets Oap such that 

We choose the sign of coordinate y of Uap so that (I, y)ap E Cp if y z- 0. Here we have 
allowed for very general 'masses' &p(y), which should, of course, be positive operators 
and hence invertible, which is another generalization of this section. Then I introduce small 
SOS-Hilbert spaces Ccp = L2(Smp). alp. The operators restricted to Cap will be again 
denoted by an accent ". Now cut off the cs around C, and attach y-flat the so-called cup- 
waveguides on the other sides of all connected parts Sap, ulp of the boundary aC, (see 
figure 2). Thus one defines the scattering Hamiltonians which in local coordinates read 

The fundamental solution of the time-independent Schradinger equation for the scattering 
problem (80) in the +waveguide is given by 

#e (IllXf(0) G p  *-'/'(') e*&E(nY 

where the wavenumber operator &#(E) is the positive square root of the sei€-adjoint 
operator 

Vectors from the dual space && are written with reversed indices, e.g. p&1 E L&. Thus 
the general scattering wavefunction of the Hamiltonian fi, in the up-waveguide ( y  P 0) 
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6 A e 
H H 3  

Figure 2. The genmeuy of the two-dimensional cs of a bound system with multiple sections (a). 
One of the related scattering systems is shown schematically in (b). 

reads 

x kp(E)k:flzlap (83) 

(where k$ = kAf(0))  and is uniquely determined by the incoming waves parametrized 
by the SOS-states I@Ly or coming from the cYy-waveg$de for all neighbouring 
compartments Cy. We have introduced the scattering operators ?flay which will be called 
generalized CSOS-CSOS propagators. ?jay is the scattering operator from Lay to Lp. and 
describes the propagation from Cy to CO via C,. Then we define the two types of linear 
operators: ay from small sos-Hilbert spaces Lay to Hilbert space 'H, and from Hilbert 
space 'H to small sos-Hilbert spaces L,, by the following prescriptions: 

Y l U  

YCJ 

Yl@ 

Y E 3  

E(Qlg&p) lF Iay  = Ya(4, E )  

ya {P* l+ ;mq)  = %CQ. E * ) .  

The resolvent of the scattering Hamiltonian with outgoing boundary conditions 

&,(E) = ( E  - fie +io)-' 
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can also be written explicitly (in analogy with (18)) inside the waveguides ( y  2 0, y’ > 0) 

In analogy with the simply-connected case we also define: (i) the operators QaY(E) from 
.Cup to ‘H and the operators ppyu(E) from li to Lpa with the kernels 

which are called generalized CSOS-CS and CS-csOS propagators respectively, and (ii) &(E) 
a linear operator over ‘H with the kernel 

which is called the generalized CS-CS propagator (without crossing the csos in between). 

large SOS-Hilbert space M 
Let us compact our notation by introducing the following symbols. First we define the 

M =@LOB 

with a complete system of orthogonal projectors k p .  (Note that each pair (a, p) is always 
included twice, once as orlp and once as @lor.) For each sos-state I$] we write symbolically 

I*) = CI$h 

f(E) = fBap(E)fimy 

I!hlUB = ii.gl$I. 
UlB 

One then defines the large operators ?(E),  Q(E) and ?(E) by 

Bl.lY 

Q ( E )  = Quy(E) fLy  

@ ( E )  = ~ f & @ , , ( E )  
w 

YU 

or equivalently 

Now, geometrically most general form of the main result of this paper can be stated and 
proved very elegantly. 
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Theorem 2c. The resolvent of the Hamiltonian (?(E) = (E - &)-I can be decomposed in 
terms of few-elementary propagators, namely 60 : 'H + 'H, Q : M -+ X, Q : 'H + M ,  
and f : M + M ,  as follows: 

(91) 

Pmof: Put the decomposition formula in a sandwitch between (ql and Iq'). One should 
prove that the RHs also solves the inhomogeneous Schrodinger equation as the LHS does 

This is indeed true in every compartment C, separately, where (q16o(E)Iq') is a particular 
solution and (qlQ(E)(l- f (E)) - l?(E)[q ' )  is a solution of the homogeneous equation by 
constmction of the operator ~&E) .  What is left to prove is that the RHS is continuously 
differentiable on borders between compartments, that is on csos S. Take arbitrary 
neighbouring compartments C, and Cp and choose coordinates (2, ~ ) ~ p  of an open set 
U,, which includes Sap. We shall need the following values and normal derivatives of 
the csoscs and cs-csos propagators on the Sap which can be obtained directly from 
(W-W), 

(93) 

&(E)  = &(E)  + Q(E)(l - f(E))-'P(E). 

(E - H(-ifiaq, m&;(E)id) = ~ ( 4  - 9') .~ (92) 

J 7  ~ " 112 --1/2 
KP, o),t = - p . { z ~ ~ , ,  ~ ( E ) ( ~ ~ ~ ~ ( E )  + agY) 

a,{(z,~)~~i&.~(E)t,~ = 7~ p ~ { P I i @ ~ f i ~ ~ ( E ) ( ? p a Y ( ~ )  - 88,) 

A 
J 

(94) 

X(1 - f)-'Plq') 
6 " ' I2 " --lq - P . 4  I!$) . = - pa(zlM,~ Kap A 

We have applied equations (93), (88) and (90). Analogously, by applying equations (94), 
(88) and (90) we get (note also that (z, y),p = (2, -y)aa)  
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In order to see that A,((z, O)uplelg') = 0 and A,a,((z, y),p16:rf)ly=o = 0 one has to 
prove 

considering the definition of &(E) in terms of ka(E) (equation (87)). But this is easy. 
Both, LHSS and RHSs of (97) and (98) satisfy the conjugated Schriidinger equation as functions 
of g'. The initial data, the values and the normal derivatives of the LHSs and RHSs on any 
initial surface (z', 0),,, aly also match as can be seen by applying g' = (z', y')., and 
(84) to LHSS and (95) and (96) to wss.'The formulae (97) and (98)/(91) then follow from 
the uniqueness of the initial-value homogeneous (4)/non-homogeneous (92) Schrodinger 

One can formally expand the decomposition formula (91) in a geometric series or sum 

problem. 0 

over paths 
- -  n22 

~ l l ~ ~ . . . I U "  

&E) = &(E) f Q,,-, ( ~ ) z " ~ " - l u " - z ( ~ )  . . . t,., ( E ) L  ( E )  (99) 

where each term contains probability amplitudes to propagate from compartment C,, 
to C,, . . . to CuN. If one chooses many disconnected parts of CSOS Sue,+, which are 
geometrically close then the propagators ?,gv(E) would become simple and they could 
be asymptotically explicitly calculated, so the formula (99) would turn into a kind of 
path-integral formula for the energy-dependent quantum propagator. Note that so far the 
expansion (99) only has a formal and heuristic meaning stimulating physical intuition, 
and probably quite generally gives a divergent series l i e  many other quantum probability 
amplitude expansions in physics. 

5. Discussion and conclusions 

This paper presents a theoretical construction of SOS reduction of quantum dynamics in 
analogy with the SOS reduction of classical dynamics. However, there is an important 
difference: in classical dynamics, one should carefully choose SOS such that almost every 
trajectory crosses it, while in quantum dynamics this is not essential. All theorems work 
even if csos lies in a classically forbidden region although the practical usefulness of 
the method is expected to be worse then, because of the exponential localization and 
sensitive dependence on boundary conditions. Moreover, the formalism of section 4 can he 
easily adapted (by taking two different Csoss as a single multiply-connected CSOS) to show 
explicitly that the spectra, as determined by our method, do not depend on the choice of 
the csos, since the corresponding quantum Poincar6 mappings are related to each other by 
a kind of similar@ transformation. 

The Green function-energy-dependent quantum propagator-has been decomposed 
in terms of propagators which propagate from C~/CSOS to CS~CSOS. This decomposition 
formula has been generalized in two ways: (i) for Green functions of arbitrary linear 
differential systems and (ii) for SOS which consists of more than one disconnected part. The 
combination of these two generalizations is straightforward w i t  is not given explicitly in 
this paper. While this general decomposition formula (equation (91) or even (70)) so far has 
merely theoretical value, it has a very practical consequence, namely, the sos-quantization 
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condition. The resolvent of the Hamiltonian ( E  - 8)-' can have a pole, i.e. eigenenergy 
EO, only when the operator 1 - ?(EO) is singular, i.e. when the general quantum Poincare' 
mapping ?(EO) has a fixed point I@] E M ,  ?(Eo)[@] = I@]. For the more special and 
common case of section 2 we have M = Le L, T" =(:+ :), and I+) =("I),  where 

It} is a fixed point of the quantum Poincar6 mapping T"k?r and at the same time 1J.l is a 
fixed point of a similar mapping ?+T"J. This quantization condition can be very efficiently 
numerically implemented [14,12,11]. Since the exact quantum Poincare mapping is usually 
difficult to calculate explicitly we describe its semiclassical E-expansion and give explicitly 
the leading (Bogomolny's [l]) and next-to-leading order terms. 

Recently I have been informed that one of the results of this paper, namely the SOS 
. quantization condition for two-dimensional Hamiltonian systems of the standard type, has 

also been obtained independently and subsequently by Rouvinez and Smilansky [12]. In 
a somewhat different notation they use the same scattering trick and their quantization 
condition is, in fact, identical to one part of theorem la while this theorem further explains 
the spurious levels which are just the threshold energies for opening of the new channels EA. 
They 1121 also give a constructive method for obtaining the eigenfunctions which is 
equivalent to (28) but they do not derive the more general SOS decomposition of the Green 
function (theorems Za-c). 
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